Influences of the Lake Champlain Valley on Freezing Rain Events at Burlington, Vermont

Christopher McCray McGill University Montréal, Québec

Burlington, VT (KBTV) has a history of severe ice storms...

Valleys can channel cold surface air equatorward

- Pressure-driven channeling: winds in valley flow in direction of along-valley pressure gradient
- Can support (i.e.) NE sfc. winds, southerly aloft
 - CAA at surface, WAA aloft
 - Maintains cold/warm layers

Pressure-Driven Channeling

(Whiteman 2000)

Valleys can channel cold surface air equatorward

Wind Event Types at CYUL

Razy et al. (2012, JAMC)

Pressure-Driven Channeling at KBTV

- Resulted in sfc. CAA in Lake Champlain Valley (LCV) during 1998 Ice Storm
 - Without orographic channeling: virtually no FZRA at KBTV during '98 storm (Roebber and Gyakum 2003)
- How does the LCV modulate severe FZRA events at KBTV?

Freezing Rain Climatology at KBTV

- 1973-2014 Surface Obs.
- Median Annual FZRA:
 - 14.0 h/yr ; 5.0 d/yr
- Event Duration:
 - Number of hours separated by <6 h each of different/no precip.
 - Longest: Jan 1998 (33 h); Dec 2013 (17 h); Mar 1984 (13 h)
- Long-Duration:
 - 6+ hrs FZRA

Two Categories of Severe Freezing Rain Events

- Two categories, each 135° range of wind directions: NNW, SSE
- NNW/SSE *Events*: All FZRA obs. must have winds within ranges
- 13 long-duration NNW events
 Median: 9 h Max: 17 h
- 13 long-duration SSE events
 Median: 7 h Max: 10 h

NNW Long-Duration Events – Synoptic Composites

 NARR MSLP composite for
 12 NNW longduration events

• KBTV = Blue Dot

SSE Long-Duration Events – Synoptic Composites

- NARR MSLP
 composite for
 10 SSE long-duration
 events
- KBTV = Blue Dot

Synoptic vs. Observed Surface Flow at Event Onset

- Southerly geostrophic sfc. winds at KBTV
- Approx. agreement with SSE observed

- Easterly geostrophic sfc. winds (not NNW)
- PGF points north \rightarrow south (down LCV)
- Pressure-driven channeling supported

LCV Pressure Gradient at Event Onset

NNW-channeled winds maintain below-0°C temps...

Mean Onset T: -2.2°C Mean T 1 h after event ends: -1.2°C Mean Onset T: -4.9°C Mean T 1 h after event ends: +0.7°C

Precursor air masses differ between event types

Mean Onset T: **-2.2°C** Mean T during 24h Prior to Onset: **-0.2°C** Mean Onset T: **-4.9°C** Mean T during 24h Prior to Onset: **-10.2°C**

Prior to SSE onset, LCV channels cold air

KBTV NARR Soundings at Onset

Channeling and NARR/Models

Summary

- FZRA occurs at KBTV with NNW and SSE winds
 - 2 different synoptic settings
- LCV is vital in channeling NNW winds during NNW events
- Pressure-driven channeling down LCV helps advect cold air southward prior to SSE events
 - Otherwise, too warm at onset

List of NNW and SSE Long-Duration Events

NNW Events		SSE Events	
Onset	Duration (Hours)	Start	Duration (Hours)
1900 UTC 21 Jan 1979	6	1700 UTC 20 Dec 1973	6
2000 UTC 26 Feb 1979	10	0800 UTC 26 Jan 1976	7
1600 UTC 21 Mar 1983	8	0500 UTC 21 Dec 1978	7
2300 UTC 18 Mar 1984	13	0800 UTC 28 Nov 1980	8
0300 UTC 04 Mar 1991	9	0800 UTC 04 Jan 1982	6
0800 UTC 11 Nov 1991	6	0800 UTC 15 Dec 1984	6
0100 UTC 31 Dec 1992	9	1900 UTC 09 Dec 1986	8
1254 UTC 07 Jan 1998	7	1700 UTC 04 Mar 1989	8
1754 UTC 08 Jan 1998	10	0500 UTC 16 Feb 1990	6
1154 UTC 17 Nov 2002	8	0800 UTC 28 Jan 1994	8
1554 UTC 08 Mar 2008	11	1000 UTC 12 Jan 1995	6
1449 UTC 08 Nov 2010	6	0454 UTC 01 Feb 2002	10
1801 UTC 21 Dec 2013	17	1854 UTC 12 Jan 2005	6