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Freezing rain events remain a major forecast challenge

@ e They require a sufficiently warm
warm layer aloft to completely melt

T *o % snowflakes
% % e They also require surface temperatures
R <0°C
S 0°C ® % e Only 11% of FZRA events last longer than 4 h
I (Cortinas et al. 2004)
warm fayer o0 o Duration is a key factor in event severity
e M LA
<0°C
cold layer o0

0°C



Diabatic effects mean freezing rain events are
self-limiting (Stewart et al. 1985, Lackmann et al. 2001)

@ e Latent heat of fusion is...

T o Extracted when snowflakes melt in warm
% % layer (cooling the warm layer)
o Released when rain freezes at the surface
*x%* (warming the cold layer)

e*% Melting ° For event persistence, compensatory
> 0°C L mechanisms are necessary:
warm layer PP o At the surface...
m Particularly cold, dry onset conditions
o0 OR advection of cold, dry air
<0oC A @ o In the warm layer
cold layer o0 Fre;rzing m Particularly warm onset conditions

OR warm-air advection

0°C



Diabatic effects mean freezing rain events are
self-limiting (Stewart et al. 1985, Lackmann et al. 2001)

1. Where do these conditions
occur most often?

2. Which mechanisms are

= ? .
most important* e For event persistence, compensatory

mechanisms are necessary:.
o At the surface...
m Particularly cold, dry onset conditions
OR advection of cold, dry air
o |In the warm layer
m Particularly warm onset conditions
OR warm-air advection

3. What distinguishes
persistent events from
shorter ones?



Data and methods

579 surface stations used in dataset

» Surface Observations:
« NOAA Integrated Surface Database
« 1979-2016, U.S. and Canada

e Upper-air data: U. Wyoming archive

e NCEP CFSR Reanalysis
« 0.5°x0.5° grid, 6-hourly, 1979-present



Data and methods

Histogram - Event Duration
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Freezing rain, LD events occur most often in the
northeastern U.S. and southeastern Canada...

Median Annual FZRA Hours (1979-2016)
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...but when freezing rain occurs in the Southeast and South
Central U.S,, it tends to be persistent

% of FZRA events that are long-duration

90%

40%

30%

20%

10%

0%

Number of 18+ h FZRA events (1979-2016)




We identify three focus regions based on this climatology
and examine FZRA events in each

e Northeastern U.S./ Southeastern \ EUS/SECA;QL/ 50°N
Canada (NEUS/SECA) D o
e South Central U.S. (SCUS)
e Southeastern U.S. (SEUS) scu oo
e Upper-air observations E ,, **
o Regional aggregation . * > /SEUS
o Examine all soundings for 30°N
events that started within 1 h A
of a radiosonde release 10w oW oW il
O *

Surface station Upper-air site



In McCray et al. (submitted to Weather and Forecasting), we identified
the regional thermodynamic evolution of LD events

e \We compared surface/upper-air obs taken at
LD event onset with those at event end

| ;gUS/SECAf%—/Z 50°N
e Northeastern U.S./ Southeastern Canada | \ o
(NEUS/SECA)
o Cold onset surface temperature, deep cold layer 40N
m Weak or absent surface cold-air advection
o Weak onset warm layer
o Strong warm-air advection just above the surface SO
m Builds warm layer, erodes cold layer T ET E— SR

o FZRA ends as surface temperature reaches 0°C
o Snow/lce Pellets - FZRA — Rain
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In McCray et al. (submitted to Weather and Forecasting), we identified

the regional thermodynamic evolution of LD events

e \We compared surface/upper-air obs taken at
LD event onset with those at event end

e Northeastern U.S./ Southeastern Canada
(NEUS/SECA)

o Cold onset surface temperature, deep cold layer
m Weak or absent surface cold-air advection

o Weak onset warm layer

o Strong warm-air advection just above the surface
m Builds warm layer, erodes cold layer

RgUSISECAf'”/
7\

105°W 90°W

o FZRA ends as surface temperature reaches 0°C
o Snow/lce Pellets - FZRA — Rain

We now compare conditions at LD (long-duration) event

onset with those at SD (short-duration) event onset
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How do surface temperatures differ between long-duration
(LD) and short-duration (SD) events?

MeanLDT__.—MeanSDT__. (°C)

NEUS/SECA
3 Regional mean:
-1.6°C
2 (Significant for p<0.001)
SCUS -1 LD events start at surface
Reaional mean: temperature that are on
9 . -0 average 1.6°C colder
0.0°C than for SD events

S~
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Height AGL (m)

A deeper and colder cold layer supports longer
duration events over the NEUS/SECA

Cold Layer T__ Warm Layer T
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=> Allows warming from freezing + advection to persist for
longer period before layer surface warms to 0°C



How do synoptic patterns differ between SD and LD
events?

Composite SLP at onset

e \We composite a random
sample of 30 LD and 30 SD
events at select locations

e At KALB, LD events involve:
o A cyclone situated to the

SW
o An anticyclone centered to
the NE

t d ) LD mean

KALB - Albany, NY



How do synoptic patterns differ between SD and LD

events?

Composite SLP at onset

SD mean

LD mean

KALB - Albany, NY

We composite a random

sample of 30 LD and 30 SD

events at select locations

At KALB, LD events involve:

o A cyclone situated to the
SW

o An anticyclone centered to
the NE

SD events involve

o A cyclone situated due W

o An anticyclone centered
due E



How do synoptic patterns differ between SD and LD

events?

LD mean SLP - SD mean SLP
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Stippling:

tippli KALB - Albany, NY
Significant for p<0.05

We composite a random

sample of 30 LD and 30 SD

events at select locations

At KALB, LD events involve:

o A cyclone situated to the
SW

o An anticyclone centered to
the NE

SD events involve

o A cyclone situated due W

o An anticyclone centered
due E



These differences are consistent within focus
regions, despite terrain variations, etc.

KALB - Albany, NY




These differences are consistent within focus
regions, despite terrain variations, etc.

] (@) _
KALB - Albgv— ¢ QQZ)

. Median anpual |
LD events

Terrain features can support cold air trapping/channelling during favorable
synoptic setups for freezing rain
— Allows for longer duration events than in areas without such features



Summary

Long-duration (LD) freezing rain events are most
common over the northeastern U.S. and
southeastern Canada

o Storm track key, terrain produces local maxima
LD events, compared with SD ones, exhibit

o A deeper, colder onset cold layer

o Colder surface temperatures at onset

o A deeper anticyclone to the NE (instead of E)

o A more distant surface cyclone/warm front
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Summary

Long-duration (LD) freezing rain events are most
common over the northeastern U.S. and

southeastern Canada

o Storm track key, terrain produces local maxima

LD events, compared with SD ones, exhibit

o A deeper, colder onset cold layer

o Colder surface temperatures at onset

o A deeper anticyclone to the NE (instead of E)

o A more distant surface cyclone/warm front

e Future Work

o Further analysis of composite differences

o How can relationships between onset
characteristics and duration be applied to
forecasts?
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