Quantifying the Impact of Precipitation Type Algorithm Selection on Projected Changes to Freezing Rain Events in an Ensemble of RCM Simulations

Christopher McCray^{1,2}, Julie M. Thériault¹ Dominique Paquin², Émilie Bresson²

- 1. Université du Québec à Montréal, Département des sciences de la Terre et de l'atmosphère
- 2. Ouranos Consortium, Montréal

34th Conference on Climate Variability and Change - 15 January 2021

Freezing rain events and their socioeconomic impacts are likely to change as the climate warms

Freezing precipitation (rain and drizzle) can form via one of two processes

Representing freezing rain in weather and climate models remains a major challenge

- Sufficient vertical resolution required to represent shallow near-surface cold layers, shallow/sharp warm layers aloft
- Sufficient horizontal resolution necessary to reproduce terrain features
- Sufficiently frequent output required to simulate brief events
 - Most freezing rain events < 3 hours (Cortinas 2004, McCray et al. 2019)

Freezing rain is often identified in model output using precipitation-type algorithms

- Vertical temperature, humidity profiles
 - Wet-/dry-bulb temperature
 - Relative humidity, dew-point depression
- Empirically derived **thresholds** for melting/refreezing (layer areas/depths)
- Freezing rain difficult to distinguish from ice pellets
- Algorithms have varying **biases**
 - Preference for ice pellets or freezing rain (Reeves et al. 2014)

Past studies on freezing rain in a warming climate have typically chosen one algorithm

- Cheng et al. (2007, 2011)
 - Statistical downscaling of output from several GCMs (~2.5°-3.75°)
- Lambert and Hansen (2011)
 - One GCM (~2.8°)
 - One algorithm (Ramer et al. 1993) postprocessed on 20 pressure levels + surface, every 12 hours
- Matte et al. (2018)
 - One RCM (CRCM5) (0.11° over northeastern US/southern Quebec)
 - Five algorithms postprocessed on 56 vertical levels, every 300 s
- Jeong et al. (2019)
 - 50-member initial-condition ensemble (CanRCM) (0.44°)
 - One algorithm (Bourgouin 2000) postprocessed on 4 vertical levels (2 m, 500/850/1000 hPa) every 6 hours

(c) FP occurrence hours

(Jeong et al. 2019, Fig. 7c)

Objective: Quantify uncertainty related to precipitation-type algorithm selection

- Only Matte et al. 2018 examined output using multiple algorithms
- Different algorithms have differing sensitivities based on variables used
- Changes in these variables may result in different projections of freezing rain
- **Question**: How do differences between algorithms impact projected changes to freezing rain events over North America?

Methods: fifth-generation Canadian Regional Climate Model (CRCM5) (0.22°)

- CRCM5 (Martynov et al. 2013, Šeparović et al. 2013) @0.22°, run at Ouranos
 - Developed at Centre ESCER (Étude et la Simulation du Climat à l'Échelle Régionale) UQAM
 - Resolves key terrain features, freezing rain events over Quebec (Cholette et al. 2015, Bresson et al. 2017, St. Pierre et al. 2019)
- Several pilot GCM simulations available in NA-CORDEX
 - Here: CanESM2
- Two periods
 - 1980-2009
 - 2070-2099 (RCP 8.5)
- Four algorithms assessed on 3-hourly output when 3-h precip > 0.125 mm (1 mm day⁻¹)
- 22 pressure levels + surface (2 m)

CRCM5 domain and surface orography

We diagnose freezing precipitation using four algorithms

Cantin and Bachand (1993) ("Partial thickness method")

- No saturation/ice nucleation criteria
- Uses 850-700-hPa and 1000-850-hPa thicknesses
- Added surface temperature criteria (T \leq 0°C)

Ramer (1993)

- Saturated layer: RH > 80% (tunable parameter)
- Ice nucleation: wet-bulb temperature $T_w < -6.6$ °C
- Calculates change in ice fraction as particles descend

Baldwin et al. (1994)

- Saturated layer: dew-point depression < 2, 4, 6°C
- Ice nucleation: wet-bulb temperature $T_w < -4^{\circ}C$
- Compares several area calculations (e.g, area between -4°C and T_w)

Bourgouin (2000)

- No saturation/ice nucleation criteria
- Calculates melting/refreezing energies (difference between dry-bulb temperature and 0°C)
- Precipitation type determined by relationship between the two

Preliminary results

Mean annual 3 h periods of freezing rain 1980-2009

Change (# of 3 h periods) (2070-2099 – 1980-2009)

Summary

- CRCM5 at 0.22° generally reproduces the current climatology of freezing rain over North America
 - More detailed validation ongoing
- General agreement on changes between different algorithms, though some differences particularly at borders between increase/decreases
 - Magnitude of change sensitive to algorithm selection, though relative changes more similar
- Differences between algorithms related to saturation and ice formation (and therefore freezing drizzle formation) result in largest discrepancies between projections

Ongoing/future work

- Validate climatology of freezing rain in historical simulation (CRCM5 driven by ERA-Interim)
 - Comparison with climatological data from McCray et al. 2019
 - Comparison with Hydro-Québec ice accretion observations
- Examine changes to freezing rain events
- Expand analysis to additional simulations
 - Remaining CRCM5 Ouranos simulations
 - RCP 4.5, other pilot GCMs, mid-century period
 - Other CORDEX simulations (different RCMs)
 - Combine various sources of uncertainty to develop complete picture of projected changes

Hydro-Québec ice measurement network

References

- Baldwin, M., R. Treadon, and S. Contorno, 1994: Precipitation type prediction using a decision tree approach with NMCs mesoscale eta model. *10th Conf. on Numerical Weather Prediction*, Portland, OR, Amer. Meteor. Soc., 30–31.
- Bourgouin, P., 2000: A Method to Determine Precipitation Types. *Wea. Forecasting*, **15**, 583–592.
- Bresson, E., R. Laprise, D. Paquin, J. M. Thériault, and R. de Elía, 2017: Evaluating the Ability of CRCM5 to Simulate Mixed Precipitation. Atmos. -Ocean, 55, 79–93.
- Cantin, A., and D. Bachand, 1993: Synoptic pattern recognition and partial thickness techniques as a tool for precipitation types forecasting associated with a winter storm. Technical report, Environment Canada, 9 pp.
- Cholette, M., R. Laprise, and J. Thériault, 2015: Perspectives for Very High-Resolution Climate Simulations with Nested Models: Illustration of Potential in Simulating St. Lawrence River Valley Channelling Winds with the Fifth-Generation Canadian Regional Climate Model. *Climate*, **3**, 283–307.
- Cortinas, J. V., B. C. Bernstein, C. C. Robbins, J. Walter Strapp, J. V. Cortinas Jr., B. C. Bernstein, C. C. Robbins, and J. Walter Strapp, 2004: An Analysis of Freezing Rain, Freezing Drizzle, and Ice Pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377–39.
- Martynov, A., R. Laprise, L. Sushama, K. Winger, L. Šeparović, and B. Dugas, 2013: Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian Regional Climate Model, version 5: Model performance evaluation. *Clim. Dyn.*, 41, 2973–3005.
- McCray, C.D., E.H. Atallah, and J.R. Gyakum, 2019: Long-Duration Freezing Rain Events over North America: Regional Climatology and Thermodynamic Evolution. Wea. Forecasting, 34, 665–681.
- Ramer, J., 1993: An empirical technique for diagnosing precipitation type from model output. *Fifth Int. Conf. on Aviation Weather Systems*, Vienna, VA, Amer. Meteor. Soc., 227–230.
- Reeves, H. D., K. L. Elmore, A. Ryzhkov, T. Schuur, and J. Krause, 2014: Sources of Uncertainty in Precipitation-Type Forecasting. *Wea. Forecasting*, 29, 936–953.
- Šeparović, L., A. Alexandru, R. Laprise, A. Martynov, L. Sushama, K. Winger, K. Tete, and M. Valin, 2013: Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. *Clim. Dyn.*, **41**, 3167–3201.
- St-Pierre, M., J. M. Thériault, and D. Paquin, 2019: Influence of the Model Horizontal Resolution on Atmospheric Conditions Leading to Freezing Rain in Regional Climate Simulations. *Atmosphere-Ocean*, **57**, 101–119.

Questions? Lightning talk: Friday, 15 January – 1:20 PM Email: mccray.christopher_david@uqam.ca